Coregulated genes link sulfide:quinone oxidoreductase and arsenic metabolism in Synechocystis sp. strain PCC6803.
نویسندگان
چکیده
Although the biogeochemistry of the two environmentally hazardous compounds arsenic and sulfide has been extensively investigated, the biological interference of these two toxic but potentially energy-rich compounds has only been hypothesized and indirectly proven. Here we provide direct evidence for the first time that in the photosynthetic model organism Synechocystis sp. strain PCC6803 the two metabolic pathways are linked by coregulated genes that are involved in arsenic transport, sulfide oxidation, and probably in sulfide-based alternative photosynthesis. Although Synechocystis sp. strain PCC6803 is an obligate photoautotrophic cyanobacterium that grows via oxygenic photosynthesis, we discovered that specific genes are activated in the presence of sulfide or arsenite to exploit the energy potentials of these chemicals. These genes form an operon that we termed suoRSCT, located on a transposable element of type IS4 on the plasmid pSYSM of the cyanobacterium. suoS (sll5036) encodes a light-dependent, type I sulfide:quinone oxidoreductase. The suoR (sll5035) gene downstream of suoS encodes a regulatory protein that belongs to the ArsR-type repressors that are normally involved in arsenic resistance. We found that this repressor has dual specificity, resulting in 200-fold induction of the operon upon either arsenite or sulfide exposure. The suoT gene encodes a transmembrane protein similar to chromate transporters but in fact functioning as an arsenite importer at permissive concentrations. We propose that the proteins encoded by the suoRSCT operon might have played an important role under anaerobic, reducing conditions on primordial Earth and that the operon was acquired by the cyanobacterium via horizontal gene transfer.
منابع مشابه
Synechocystis sp . PCC 6803 2 3 Running Title : Sulfide and arsenic metabolism in Synechocystis 4 5
Co-regulated genes link sulfide:quinone oxidoreductase and arsenic metabolism in 1 Synechocystis sp. PCC6803 2 3 Running Title: Sulfide and arsenic metabolism in Synechocystis 4 5 Csaba I. Nagy, Imre Vass, Gábor Rákhely, István Zoltán Vass, András Tóth, Ágnes 6 Duzs, Loredana Peca, Jerzy Kruk, Péter B. Kós# 7 8 Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of 9...
متن کاملTwo types of functionally distinct NAD(P)H dehydrogenases in Synechocystis sp. strain PCC6803.
The ndhD gene encodes a membrane protein component of NAD(P)H dehydrogenase. The genome of Synechocystis sp. PCC6803 contains 6 ndhD genes. Three mutants were constructed by disrupting highly homologous ndhD genes in pairs. Only the DeltandhD1/DeltandhD2 (DeltandhD1/D2) mutant was unable to grow under photoheterotrophic conditions and exhibited low respiration rate, although the mutant grew nor...
متن کاملBiotransformation and volatilization of arsenic by three photosynthetic cyanobacteria.
Arsenic (As) is a pervasive and ubiquitous environmental toxin that has created worldwide human health problems. However, there are few studies about how organisms detoxify As. Cyanobacteria are capable of both photolithotrophic growth in the light and heterotrophic growth in the dark and are ubiquitous in soils, aquatic systems, and wetlands. In this study, we investigated As biotransformation...
متن کاملStudy of Light Wavelength Dependency in Red-Orange Spectrum on Continuous Culture of Synechocystis sp. PCC6803
In this study, the effect of light wavelength on growth rate and lipid production of Synechocystis was investigated. Continuous cultivation system was used to have uniform cell density and avoid self-shading in order to obtain more precise results. Based on previous studies, red light is more efficient than other colors in the visible spectrum for cultivation of Synechocystis; however, the opti...
متن کاملIdentification and analysis of the polyhydroxyalkanoate-specific beta-ketothiolase and acetoacetyl coenzyme A reductase genes in the cyanobacterium Synechocystis sp. strain PCC6803.
Synechocystis sp. strain PCC6803 possesses a polyhydroxyalkanoate (PHA)-specific beta-ketothiolase encoded by phaA(Syn) and an acetoacetyl-coenzyme A (CoA) reductase encoded by phaB(Syn). A similarity search of the entire Synechocystis genome sequence identified a cluster of two putative open reading frames (ORFs) for these genes, slr1993 and slr1994. Sequence analysis showed that the ORFs enco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 196 19 شماره
صفحات -
تاریخ انتشار 2014